
LaTeX LaTeX's Friends LaTeX Distributions LaTeX Editors Writing Articles

Login

Register | Extended Login

Username

••••••••

 Remember Me

Login

Visual LaTeX Editor
True WYSIWYG LaTeX
System for scientific papers
www.bakoma-tex.com

Donate

You find LaTeX Community useful?
Please donate! Learn why!

Amount: 5 EUR

Partner Sites

Who is Online

We have 44 guests and 4
members online

Glossaries, Nomenclature, Lists of Symbols and Acronyms

 (66 votes, average: 3.88 out of 5)

LaTeX - General

WRITTEN BY NICOLA TALBOT

WEDNESDAY, 18 MARCH 2009 16:58

The glossaries package can be used to define terms, symbols and acronyms that can be used throughout a document. You can
then use an indexing application to collate and sort the entries that have been used in the document. It is a highly versatile
package, but it has a large manual that some beginners find daunting. This article is an introductory guide to help you get
started.

What do I need installed?
The latest version of the glossaries package (at the time of writing this) is version 1.19 and is available on CTAN. In addition, you
also need to have the following packages installed:

ifthen

xkeyval at least version 2.5f (2006/11/18)

xfor

amsgen (part of amstex)

If you want to use any of the glossary styles that use the longtable environment, you will also need to have the longtable
package installed, and if you want to use any of the glossary styles that use the supertabular environment, you will also need to
have the supertabular package installed.

The above packages are all distributed with MikTeX and TeX Live.

In addition to the above LaTeX packages, you also need to have an indexing application installed to collate and sort the entries.
The glossaries package is configured to work with makeindex or xindy. Makeindex is distributed with MikTeX, TeX Live and
teTeX, so it should be readily available on your system. Xindy is distributed with TeX Live, so you might not have it installed if
you use a different TeX distribution.

There is a common misconception that you must have Perl installed to use the glossaries package. There is a Perl
script called makeglossaries that acts as a convenient interface to makeindex or xindy, but it is not essential. This will
be discussed in more detail below.

Getting Started
The first thing that you need to do in your document is declare that you want to use the glossaries package:

\usepackage{glossaries}

Note that if you want to use xindy instead of makeindex, you must add the xindy package option:

\usepackage[xindy]{glossaries}

However you will need to have xindy installed if you want to use this option.

If you are also using the hyperref package, you must load the glossaries package after the hyperref package:

\usepackage[colorlinks]{hyperref}
\usepackage{glossaries}

This is an exception to the general rule that the hyperref package should be loaded last.

 Text Size

search...

HOME KNOW HOW FORUM YOUR PROFILE

If you want your glossaries, list of symbols and list of acronyms to appear in the document's table of contents, you also need to
use the toc package option:

\usepackage[toc]{glossaries}

Defining a Term or Symbol
Terms and symbols are defined using

\newglossaryentry{label}{definition}

The first argument is a label that uniquely defines this entry.

It is best to use only characters that are not active in the label.

The second argument is a comma-separated list of key =value pairs. The most important keys are name and description.
These are used to assign the term and a brief description to appear in the glossary, list of symbols or list of acronyms.

This article only covers the commonly used keys. See the section "Defining Glossary Entries" in the manual for a
complete list.

For example:

\newglossaryentry{culdesac}{name=cul-de-sac,description={passage
or street closed at one end}}

The above defines an entry whose label is culdesac.

It is generally best to define the terms in the preamble as they must be defined before they are used. Alternatively, you
can put all your definitions in a separate file and input it using \input{filename} or \loadglsentries{filename}

Referencing Terms
Once a term has been defined using \newglossaryentry, it can be referenced using:

\gls{label}

Returning to the example above, I can reference it using:

\gls{culdesac}

If I want the first letter to be converted to upper case, I can do:

\Gls{culdesac}

or if I want the whole term to appear in capitals, I can do:

\GLS{culdesac}

The above commands also have optional arguments that aren't discussed in this article. For further information, see the
section "Links to Glossary Entries" in the manual.

Let's put it together to make a simple document:

\documentclass{article}

\usepackage{glossaries}

\newglossaryentry{culdesac}{name=cul-de-sac,description={passage
or street closed at one end},plural=culs-de-sac}

\begin{document}
I used to live in a \gls{culdesac}. \Gls{culdesac} is another name
for a no through road.
\end{document}

When I build this document (run it through LaTeX) I get the following warnings:

Package glossaries Warning: \makeglossaries hasn't been used,
the glossaries will not be updated.

Package glossaries Warning: No \printglossary or \printglossaries found.
This document will not have a glossary.

These warnings can be ignored for the moment.

This produces a document that contains the following sentences:

I used to live in a cul-de-sac. Cul-de-sac is another name for a no through road.

It might be worth trying out this simple example to check that you have the required packages installed. (Check Installing things
on a (La)TeX system if you're not sure how to install packages.)

Plural Forms

The plural of a term can be obtained using

\glspl{label}

The default behaviour is to append the letter "s" to the name to create the plural. In the above example, that would produce "cul-
de-sacs" which is incorrect. The correct plural is "culs-de-sac". To fix this, I need to modify the definition:

\newglossaryentry{culdesac}{name=cul-de-sac,description={passage
or street closed at one end},plural=culs-de-sac}

As with the singular, I can also make the first letter of the plural form upper case:

\Glspl{culdesac}

or I can make the entire plural form appear in capitals:

\GLSpl{culdesac}

If your term has more than one plural, use the plural key for the most commonly used plural together with
\glspl{label} and use \glslink{label}{alternative plural} for the other plural.

The sort key

Later on in this article, I will cover sorting the entries using an indexing application, but when you define an entry, you need to
bear in mind that the indexing application may not know how to sort terms that contain LaTeX commands. Consider the
following example:

\newglossaryentry{pi}{name={\ensuremath{\pi}},description={ratio
of circumference of circle to its diameter}}

This entry should ideally belong to the "p" group (that is, the group of terms whose first letter is a "p") however neither
makeindex nor xindy will be able to sort this entry correctly as they can't interpret LaTeX code. Therefore, we need to tell the
indexing application that this entry needs to be sorted according to "pi":

\newglossaryentry{pi}{name={\ensuremath{\pi}},sort=pi,
description={ratio of circumference of circle to its diameter}}

Note that in the above example I have used \ensuremath instead of using $ to switch in and out of math mode. This means
that I don't need to keep track of what mode I'm in when using the entry. For example:

The ratio of the circumference of a circle to its diameter is given by \gls{pi}:
\begin{equation}
\gls{pi} = \frac{C}{d}
\end{equation}

Accents and non-Latin characters

Makeindex is hard-coded for English, so you will need to use the sort key if the entry's name contains accented or non-Latin
characters. For example:

\newglossaryentry{attache}{name=attach\'e,sort=attache,
description={person with special diplomatic responsibilities}}

Xindy was designed to overcome makeindex's inflexibility and has rules for various (but not all) languages, so if you are using
xindy with the above example, you can just do:

\newglossaryentry{attache}{name=attach\'e,
description={person with special diplomatic responsibilities}}

or if you are using the inputenc package, you can just do:

\newglossaryentry{attache}{name=attaché,
description={person with special diplomatic responsibilities}}

Care must be taken when the first character has an accent or is a non-Latin character, regardless of whether you use
makeindex or xindy. This character must be enclosed in braces if you want to use it with \Gls or \Glspl. For example

\newglossaryentry{elite}{name={\'e}lite,description={select
group or class}}

or if you are using the inputenc package:

\newglossaryentry{elite}{name={é}lite,description={select
group or class}}

Remember that if you are using makeindex, you also need to use the sort key:

\newglossaryentry{elite}{name={\'e}lite,description={select
group or class},sort=elite}

Defining an entry with both a name and a symbol
It is also possible to define an entry that has both a name and a symbol. For example:

\newglossaryentry{ohm}{name=ohm,symbol={\ensuremath{\Omega}},
description=unit of electrical resistance}

I can reference the name as usual:

\gls{ohm}

or I can reference the symbol using:

\glssymbol{ohm}

Acronyms
When you define a term, you can specify that it should appear differently on first use. You can use this facility to define
acronyms. For example:

\newglossaryentry{led}{name=LED,description={light-emitting
diode},first={light-emitting diode (LED)}}

There is a shortcut command that is equivalent to the above:

\newacronym{led}{LED}{light-emitting diode}

The glossaries package provides other acronym formats, such as making the long form appear in a footnote on first
use. These are covered in the section "Acronyms" in the manual.

You can then use the acronym in the same way as any other glossary term. For example:

\gls{led}

If this is the first time you have used this entry, it will appear as

light-emitting diode (LED)

otherwise it will appear as

LED

If you define the acronym using \newacronym rather than explicitly using \newglossaryentry, you can access the long and
short forms using:

\acrlong{label}

and

\acrshort{label}

For example:

\acrlong{led}

will produce

light-emitting diode

and

\acrshort{led}

will produce

LED

If you feel that is far too much typing, you can enable the shortcuts using the shortcuts package option:

\usepackage[shortcuts]{glossaries}

You can now use \acs instead of \acrshort and \acl instead of \acrlong.

Other acronym related commands are described in the manual. In addition to the section called "Acronyms", there is
also a section that covers resetting and unsetting entries.

Multiple Glossaries
You may have as many glossaries, lists of symbols or lists of acronyms as you like in your document. The default is to just
have one glossary. You can add a list of acronyms using the acronym package option:

\usepackage[acronym]{glossaries}

Any acronyms defined using \newacronym will automatically be added to the list of acronyms rather than the main glossary if
the acronym package option is used. If you want an additional glossary, for example a list of symbols, you need to define it
using:

\newglossary[log ext]{glossary label}{in-ext}{out-ext}{title}

The glossary label is a label that uniquely identifies this glossary. Again, it is best to use non-active characters such as
alphanumerics (a-z,A-Z,0-9) in the label. The title is used as the section or chapter header for that glossary.

The remaining arguments specify the extensions for the files that contain the glossary information. The in-ext argument

indicates the extension of the file that is created by the indexing application. This file is read in by the glossaries package's
\printglossaries command, but obviously it can only be read once it has been created by the indexing application. (This is
covered in more detail in the next section.) The out-ext argument indicates the extension of the file that is read in by the indexing
application and written out by the glossaries package.

The first optional argument log ext is the extension for the indexing transcript file. This is only needed if you use the
makeglossaries Perl script. You don't need to worry about it if you don't have Perl installed.

There is a second optional argument to \newglossary that isn't covered here. See the section "Defining New
Glossaries" in the manual for further details.

For example, suppose I want to create a list of symbols. I can define a glossary called "symbols" as follows:

\newglossary{symbols}{sym}{sbl}{List of Symbols}

When I define an entry to go in this glossary, I need to use the type key to specify the glossary label. For example:

\newglossaryentry{pi}{type=symbols,name={\ensuremath{\pi}},sort=pi,
description={ratio of circumference of circle to its diameter}}

If the type key is omitted, the main glossary is assumed.

Using makeindex or xindy
So far I have only covered how to define a term, symbol or acronym and how to use it in the document, but it is likely that you
will also want a sorted list of these entries. This is where things start to get a bit complicated and is often a source of confusion
for beginners.

The first thing that you must do is add the command

\makeglossaries

to your preamble. (This needs to come after any occurrence of \newglossary.)

The next step is to put the command

\printglossaries

where you want your glossaries, lists of symbols or acronyms to appear. This will typically be either in your front matter (with the
table of contents, list of figures etc) or back matter (with the bibliography etc).

If you want to rearrange your glossaries or have some in the front matter and some in the back matter, you can use
\printglossary which is described in the section "Displaying a glossary" in the manual.

Here is an example document:

\documentclass{article}

% Load hyperref before glossaries
\usepackage[colorlinks]{hyperref}
\usepackage[acronym,toc]{glossaries}

% Define a new glossary type
\newglossary[slg]{symbols}{sym}{sbl}{List of Symbols}

\makeglossaries

% The following definitions will go in the main glossary

\newglossaryentry{culdesac}{name=cul-de-sac,description={passage
or street closed at one end},plural=culs-de-sac}

\newglossaryentry{elite}{name={\'e}lite,description={select
group or class},sort=elite}

\newglossaryentry{elitism}{name={\'e}litism,description={advocacy
of dominance by an \gls{elite}},sort=elitism}

\newglossaryentry{attache}{name=attach\'e,
description={person with special diplomatic responsibilities}}

% The following definitions will go in the list of acronyms

\newacronym{led}{LED}{light-emitting diode}

\newacronym{eeprom}{EEPROM}{electrically erasable programmable

read-only memory}

% The following definitions will go in the list of symbols

\newglossaryentry{ohm}{type=symbols,name=ohm,
symbol={\ensuremath{\Omega}},
description=unit of electrical resistance}

\newglossaryentry{angstrom}{type=symbols,name={\aa}ngstr\"om,
symbol={\AA},sort=angstrom,
description={non-SI unit of length}}

\begin{document}
\tableofcontents

\section{Diplomatic Memoirs}

When I was an \gls{attache}, I lived in a \gls{culdesac}, but
I didn't much care for it as I found there was a fair amount
of \gls{elitism} amongst my neighbours.

\section{Student Memoirs}

When I was a student I often left bits of electronic circuitry
in my pockets, such as \glspl{led} and \glspl{eeprom}, which
often ended up in the washing machine. The \glspl{led} didn't
fair too badly, but the \glspl{eeprom} frequently broke.

\section{Symbols}

The \gls{angstrom} is commonly used in structural biology,
whereas the \gls{ohm} is used in electronics.

\printglossaries

\end{document}

If we run this document through pdflatex, we get the following warnings (amongst others):

pdfTeX warning (dest): name{glo:ohm} has been referenced but do
es not exist, replaced by a fixed one

pdfTeX warning (dest): name{glo:angstrom} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{glo:eeprom} has been referenced but does not exist,
 replaced by a fixed one

pdfTeX warning (dest): name{glo:led} has been referenced but does not exist, re
placed by a fixed one

pdfTeX warning (dest): name{glo:elitism} has been referenced but does not exist
, replaced by a fixed one

pdfTeX warning (dest): name{glo:culdesac} has been referenced but does not exis
t, replaced by a fixed one

pdfTeX warning (dest): name{glo:attache} has been referenced but does not exist
, replaced by a fixed one

These warnings are due to the fact that I have used the hyperref package, which creates hyperlinks from the terms to their
definition in the relevant glossary, list of acronyms or list of symbols, but the targets don't exist yet. If you try this example and
view the resulting PDF/DVI file, you will see that the glossaries haven't appeared yet. You may also notice that the terms
generated by \gls and \glspl have all appeared in red. This is the default colour used by the hyperref package for internal
links when used with the colorlinks option.

The next step is to use an indexing application to create the glossaries.

Using makeglossaries
The easiest way of creating the glossaries is to use the makeglossaries Perl script that comes with the glossaries package. If
you are using MikTeX, this will probably be located in C:\Program Files\MikTeX 2.7\scripts\glossaries . If you are
using a Unix style system, it should be in the same location as makeindex (or there may be a symbolic link to it from that
location).

In order to use makeglossaries, you must have Perl installed. Don't be put off by this. There are a number of useful
TeX related Perl scripts (such as epstopdf) so it really helps to have Perl, but if you are set against it for some reason,
there are instructions below to help you access makeindex or xindy explicitly.

Makeglossaries, makeindex and xindy are all command line applications. There are several ways to access that type of
application. I will first describe how to do this using the MSDOS command prompt. (Unix style users are more likely to be
familiar with using a terminal, so I shall assume they can work out what to do from the MSDOS command prompt instructions.)

Windows users can access the command prompt from the Start menu. It is usually in the Accessories folder. It should produce
something that looks like:

Next, you need to be in the same folder as your document. Let's suppose that my document is contained in the folder E:\My
Documents\thesis. There are two things to note about this path name: it uses the E drive rather than the default C drive and the
name contains a space. So I need to switch to the E drive by typing

E:

and then I need to specify the path by typing

cd "E:\My Documents\thesis"

Note that I have used double quotes around the path name because of the space character. These two steps are illustrated
below:

Next, I'm going to test if makeglossaries is working. To do this I'm just going to type

makeglossaries

This can produce one of two responses:

1. 'perl' is not recognised as an internal or external command,
operable program or batch file.

This means that you don't have Perl installed. If you don't want to install Perl, see Using makeindex or xindy explicitly
below. If you want to install Perl, the easiest method is to download Active Perl, run the downloaded executable and
follow the instructions. You will have to exit the command prompt (type exit or click on the close icon) and restart it.

2 . makeglossaries: Need exactly one file argument.
Use `makeglossaries --help' for help.

This means that Perl and makeglossaries have been successfully installed.

Once Perl and makeglossaries have been successfully installed you can now create your glossaries, lists of acronyms and
symbols for your document. Let's suppose the document is called myDoc.tex, then you need to type the following line into the
command prompt:

makeglossaries myDoc

Note that the file extension hasn't been used.

This should produce the following:

added glossary type 'acronym' (alg,acr,acn)
added glossary type 'symbols' (glg,sym,sbl)
makeindex -s "myDoc.ist" -t "myDoc.alg" -o "myDoc.acr" "myDoc.acn"
This is makeindex, version 2.15 [20-Nov-2007] (kpathsea + Thai support).
Scanning style file ./myDoc.ist...........................done (27 attributes redefined, 1 ignored).
Scanning input file myDoc.acn....done (4 entries accepted, 0 rejected).
Sorting entries....done (10 comparisons).
Generating output file myDoc.acr....done (9 lines written, 0 warnings).
Output written in myDoc.acr.
Transcript written in myDoc.alg.
makeindex -s "myDoc.ist" -t "myDoc.glg" -o "myDoc.sym" "myDoc.sbl"
This is makeindex, version 2.15 [20-Nov-2007] (kpathsea + Thai support).
Scanning style file ./myDoc.ist...........................done (27 attributes redefined, 1 ignored).
Scanning input file myDoc.sbl....done (2 entries accepted, 0 rejected).
Sorting entries....done (2 comparisons).
Generating output file myDoc.sym....done (9 lines written, 0 warnings).
Output written in myDoc.sym.
Transcript written in myDoc.glg.
makeindex -s "myDoc.ist" -t "myDoc.glg" -o "myDoc.gls" "myDoc.glo"
This is makeindex, version 2.15 [20-Nov-2007] (kpathsea + Thai support).
Scanning style file ./myDoc.ist...........................done (27 attributes redefined, 1 ignored).

Scanning input file myDoc.glo....done (3 entries accepted, 0 rejected).
Sorting entries....done (4 comparisons).
Generating output file myDoc.gls....done (12 lines written, 0 warnings).
Output written in myDoc.gls.
Transcript written in myDoc.glg.

This means that the glossary, list of acronyms and list of symbols have been successfully created. You now need another
LaTeX run to incorporate them into the document. If you view your document, it should now contain the glossary, list of
acronyms and list of symbols.

The numbers after each glossary entry indicate the page number on which that entry was used. The numbers are red
because the hyperref package has been used, and they link to the corresponding page.

The list of symbols doesn't show the corresponding symbol for each entry. This is because the default style ignores the symbol.
Try changing the package options to:

\usepackage[acronym,toc,style=tree]{glossaries}

See the section "Glossary Styles" in the manual for a list of predefined styles.

Using makeindex and xindy explicitly
If you don't have Perl installed you can run makeindex or xindy explicitly. Again, let's suppose that your document is called
myDoc.tex. If you are using makeindex (you haven't used the xindy package option) then you need to use makeindex for
each defined glossary . This includes the list of acronyms if you have used the acronym package option. The above example
document has three glossaries: the main one, the list of acronyms and the list of symbols. The main glossary is created by
typing the following line into the command prompt:

makeindex -s myDoc.ist -t myDoc.glg -o myDoc.gls myDoc.glo

The list of acronyms is created by typing the following line into the command prompt:

makeindex -s myDoc.ist -t myDoc.alg -o myDoc.acr myDoc.acn

The list of symbols is created by typing the following line into the command prompt:

makeindex -s myDoc.ist -t myDoc.slg -o myDoc.sym myDoc.sbl

Note that if your file name contains spaces (a bad idea), you must use double quotes around each file name. For
example:

makeindex -s "my Doc.ist" -t "my Doc.glg" -o "my Doc.gls" "my Doc.glo"

If you have decided to use xindy instead of makeindex (remember to use the xindy package option) then the main glossary is
created by typing the following into the command prompt:

xindy -L english -I xindy -M myDoc -t myDoc.glg -o myDoc.gls myDoc.glo

The list of acronyms is created by typing the following line into the command prompt:

xindy -L english -I xindy -M myDoc -t myDoc.alg -o myDoc.acr myDoc.acn

The list of symbols is created by typing the following line into the command prompt:

xindy -L english -I xindy -M myDoc -t myDoc.slg -o myDoc.sym myDoc.sbl

If you use makeindex when you should have used xindy, you will get an error message that looks something like:

Scanning input file myDoc.glo...done (0 entries accepted, 4 rejected).
Nothing written in myDoc.gls.

If you use xindy when you should have used makeindex, you will get an error message that looks something like:

ERROR: EVAL: variable |gLOSSARYENTRY{ATTACH'E?gLOSSARYENTRYFIELD{ATTACHE}{gLSNAMEFONT{ATTACH'E}}{PERSON| has no value

All things considered, it's much easier to dispense with all of the above and just type

makeglossaries myDoc

How many times do I need to build/LaTeX the document or use
the indexing application?
If you tried the example in the previous section, and followed all the instructions: build/LaTeX the document, run makeglossaries
(or makeindex) and build/LaTeX the document, you may have noticed that the document still isn't complete and is still
generating the warning message:

pdfTeX warning (dest): name{glo:elite} has been referenced but d
oes not exist, replaced by a fixed one

This warning has resulted from the fact that one of the glossary entries (elite) has only been referenced in the glossary (in the
description of elitism). This means that the first LaTeX run didn't encounter any reference to elite so it didn't write the
relevant information to the external glossary file which means that it didn't end up in the glossary. Now that the glossary is
present, we need another makeglossaries (or makeindex) run to add elite to the glossary. This in turn means that another
LaTeX run is required to update the glossary section (and to add the glossary section headers to the table of contents). Once this
has been done, the document should now be complete.

Incorporating makeglossaries into editors
Some editors, such as TeXnicCenter, allow you to specify external applications to run as a post-processor. My knowledge of
front-ends is fairly limited (I tend to only use vi and make), but here are a few pointers:

TeXnicCenter
You can add makeglossaries to the build profile of TeXnicCenter as follows:

1. Install Perl (you will need to quit TeXnicCenter and restart it after installing Perl)
2 . Select the menu item Build->Output Profiles...
3. Select the desired output profile from the box on the left (e.g. LaTeX=>PDF)
4. Select the "Postprocessor" tab from the box on the right

5. Click on the "New (insert)" icon. (This looks like a dashed rectangle to the left of the red cross.)
6. Type in makeglossaries

7. Type in the full path name of makeglossaries.bat into the executable box or use the ellipsis button on the right to browse
the filing system. (On my Windows partition, the file can be found in the folder C:\Program Files\MiKTeX
2.7\scripts\glossaries but it may be somewhere else on your system.)

The full path name must be surrounded by double quotes if it contains spaces.

8. Type "%bm" in the Arguments box

foxtrott +5

Sunday 22 March 2009, 11:16

SEARCH CONTACT US SUBMIT A NEWS TIP

Sponsored Links

Renegade Motorhomes - Credit Card Consolidation - Debt Consolidation - Nevis Hotel

LaTeX-Community.org - a Web Site by Sven Wiegand

9. Repeat for each output profile as desired.
10. Click on okay

WinEdt
There is a thread on comp.text.tex that discusses how to do use makeglossaries with WinEdt.

Other Editors
If you use another editor, I suggest you search the editor's documentation to find how to use makeindex. It's possible that you
may be able to infer from that how to use makeglossaries. (Perhaps users who have already worked out how to do it for their
preferred editor might like to add instructions as a comment to this article.)

Comments

Really nice.. Tank you very much

Please login to post comments or replies.

